Actinide Complexation Kinetics: Rate and Mechanism of Dioxoneptunium(V) Reaction with Chlorophosphonazo III

Abstract

Rates of complex formation and dissociation in NpO{sub 2}{sup +}- Chlorophosphonazo III (2,7-bis(4-chloro-2-phosphonobenzeneazo)-1,8- dihydroxynapthalene-3,6-disulfonic acid)(CLIII) were investigated by stopped-flow spectrophotometry. Also, limited studies were made of the rates of reaction of La{sup 3+}, Eu{sup 3+}, Dy{sup 3+}, and Fe{sup 3+} with CLIII. Rate determining step in each system is an intramolecular process, the NpO{sub 2}{sup +}-CLIII reaction proceeding by a first order approach to equilibrium in the acid range from 0.1 to 1.0 M. Complex formation occurs independent of acidity, while both acid dependent and independent dissociation pathways are observed. Activation parameters for the complex formation reaction are {Delta}H=46.2{+-}0.3 kJ/m and {Delta}S=7{+-} J/mK (I=1.0 M); these for the acid dependent and independent dissociation pathways are {Delta}H=38.8{+-}0.6 kJ/m, {Delta}S=-96{+-}18 J/mK, {Delta}H=70.0{+-} kJ/m, and {Delta}S=17{+-}1 J/mK, respectively. An isokinetic relationship is observed between the activation parameters for CLIII complex formation with NpO{sub 2}{sup +}, UO{sub 2}{sup 2+}, Th{sup 4+}, and Zr{sup 4+}. Rates of CLIII complex formation reactions for Fe{sup 3+}, Zr{sup 4+}, NpO{sub 2}{sup +}, UO{sub 2}{sup 2+}, Th{sup 4+}, La{sup 3+}, Eu{sup 3+}, and Dy{sup 3+} correlate with cation radius rather than charge/radius ratio

    Similar works