peer reviewedThe information on stellar parameters and on the stellar interior we can get by studying pulsating stars depends crucially on the available observational constraints: both seismic constraints (precision and number of detected modes, identification, nature of the modes) and ``classical'' observations (photospheric abundances, effective temperature, luminosity, surface gravity). We consider the case of β Cephei pulsators and, with the aim of estimating quantitatively how the available observational constraints determine the type and precision of our inferences, we set the stage for Hare&Hound exercises. In this contribution we present preliminary results for one simple case, where we assume as ``observed'' frequencies a subset of frequencies of a model and then evaluate a seismic merit function on a dense and extensive grid of models of B-type stars. We also compare the behaviour of χ^2 surfaces obtained with and without mode identification