We predict pp elastic differential cross sections at LHC at c.m. energy 14
TeV and momentum transfer range |t| = 0 - 10 GeV*2 in a nucleon-structure
model. In this model, the nucleon has an outer cloud of quark-antiquark
condensed ground state, an inner shell of topological baryonic charge (r ~
0.44F) probed by the vector meson omega, and a central quark-bag (r ~ 0.2F)
containing valence quarks. We also predict elastic differential cross section
in the Coulomb-hadronic interference region. Large |t| elastic scattering in
this model arises from valence quark-quark scattering, which is taken to be due
to the hard-pomeron (BFKL pomeron with next to leading order corrections). We
present results of taking into account multiple hard-pomeron exchanges, i.e.
unitarity corrections. Finally, we compare our prediction of pp elastic
differential cross section at LHC with the predictions of various other models.
Precise measurement of pp elastic differential cross section at LHC by the
TOTEM group in the |t| region 0 - 5 GeV*2 will be able to distinguish between
these models.Comment: To be published in the Proceedings of the 12th International
Conference on Elastic and Diffractive Scattering, DESY, Hamburg. Presented by
M. M. Islam, May 200