research

On the Geometry of the Moduli Space of Real Binary Octics

Abstract

The moduli space of smooth real binary octics has five connected components. They parametrize the real binary octics whose defining equations have 0, 1, ..., 4 complex-conjugate pairs of roots respectively. We show that the GIT-stable completion of each of these five components admits the structure of an arithmetic real hyperbolic orbifold. The corresponding monodromy groups are, up to commensurability, discrete hyperbolic reflection groups, and their Vinberg diagrams are computed. We conclude with a simple proof that the moduli space of GIT-stable real binary octics itself cannot be a real hyperbolic orbifold.Comment: 23 page

    Similar works

    Full text

    thumbnail-image

    Available Versions