research

On the Complexity of the Interlace Polynomial

Abstract

We consider the two-variable interlace polynomial introduced by Arratia, Bollobas and Sorkin (2004). We develop graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we prove that the interlace polynomial is #P-hard to evaluate at every point of the plane, except on one line, where it is trivially polynomial time computable, and four lines, where the complexity is still open. This solves a problem posed by Arratia, Bollobas and Sorkin (2004). In particular, three specializations of the two-variable interlace polynomial, the vertex-nullity interlace polynomial, the vertex-rank interlace polynomial and the independent set polynomial, are almost everywhere #P-hard to evaluate, too. For the independent set polynomial, our reductions allow us to prove that it is even hard to approximate at any point except at 0.Comment: 18 pages, 1 figure; new graph transformation (adding cycles) solves some unknown points, error in the statement of the inapproximability result fixed; a previous version has appeared in the proceedings of STACS 200

    Similar works

    Full text

    thumbnail-image

    Available Versions