We study the problem of optimizing nonlinear objective functions over
matroids presented by oracles or explicitly. Such functions can be interpreted
as the balancing of multi-criteria optimization. We provide a combinatorial
polynomial time algorithm for arbitrary oracle-presented matroids, that makes
repeated use of matroid intersection, and an algebraic algorithm for vectorial
matroids.
Our work is partly motivated by applications to minimum-aberration
model-fitting in experimental design in statistics, which we discuss and
demonstrate in detail