Polar phonons of HgCr2S4 and CdCr2S4 are studied by far-infrared spectroscopy
as a function of temperature and external magnetic field. Eigenfrequencies,
damping constants, effective plasma frequencies and Lyddane-Sachs-Teller
relations, and effective charges are determined. Ferromagnetic CdCr2S4 and
antiferromagnetic HgCr2S4 behave rather similar. Both compounds are dominated
by ferromagnetic exchange and although HgCr2S4 is an antiferromagnet, no phonon
splitting can be observed at the magnetic phase transition. Temperature and
magnetic field dependence of the eigenfrequencies show no anomalies indicating
displacive polar soft mode behavior. However, significant effects are detected
in the temperature dependence of the plasma frequencies indicating changes in
the nature of the bonds and significant charge transfer. In HgCr2S4 we provide
experimental evidence that the magnetic field dependence of specific polar
modes reveal shifts exactly correlated with the magnetization showing
significant magneto-dielectric effects even at infrared frequencies.Comment: 8 pages, 8 figure