research

On the self-adjointness of certain reduced Laplace-Beltrami operators

Abstract

The self-adjointness of the reduced Hamiltonian operators arising from the Laplace-Beltrami operator of a complete Riemannian manifold through quantum Hamiltonian reduction based on a compact isometry group is studied. A simple sufficient condition is provided that guarantees the inheritance of essential self-adjointness onto a certain class of restricted operators and allows us to conclude the self-adjointness of the reduced Laplace-Beltrami operators in a concise way. As a consequence, the self-adjointness of spin Calogero-Sutherland type reductions of `free' Hamiltonians under polar actions of compact Lie groups follows immediately.Comment: 9 pages, minor changes, updated references in v

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020