research

A characterization of Gromov hyperbolicity of surfaces with variable negative curvature

Abstract

In this paper we show that, in order to check Gromov hyperbolicity of any surface with curvature K≤ −k² < 0, we just need to verify the Rips condition on a very small class of triangles, namely, those contained in simple closed geodesics. This result is, in fact, a new characterization of Gromov hyperbolicity for this kind of surfaces

    Similar works