The spread of sexually transmitted diseases (e.g. Chlamydia, Syphilis,
Gonorrhea, HIV) across populations is a major concern for scientists and health
agencies. In this context, both data collection on sexual contact networks and
the modeling of disease spreading, are intensively contributing to the search
for effective immunization policies. Here, the spreading of sexually
transmitted diseases on bipartite scale-free graphs, representing heterosexual
contact networks, is considered. We analytically derive the expression for the
epidemic threshold and its dependence with the system size in finite
populations. We show that the epidemic outbreak in bipartite populations, with
number of sexual partners distributed as in empirical observations from
national sex surveys, takes place for larger spreading rates than for the case
in which the bipartite nature of the network is not taken into account.
Numerical simulations confirm the validity of the theoretical results. Our
findings indicate that the restriction to crossed infections between the two
classes of individuals (males and females) has to be taken into account in the
design of efficient immunization strategies for sexually transmitted diseases.Comment: 7 pages, 3 figures and 2 table