research

Integrable discrete systems on R and related dispersionless systems

Abstract

The general framework for integrable discrete systems on R in particular containing lattice soliton systems and their q-deformed analogues is presented. The concept of regular grain structures on R, generated by discrete one-parameter groups of diffeomorphisms, through which one can define algebras of shift operators is introduced. Two integrable hierarchies of discrete chains together with bi-Hamiltonian structures are constructed. Their continuous limit and the inverse problem based on the deformation quantization scheme are considered.Comment: 19 page

    Similar works