research

The Heisenberg group and conformal field theory

Abstract

A mathematical construction of the conformal field theory (CFT) associated to a compact torus, also called the "nonlinear Sigma-model" or "lattice-CFT", is given. Underlying this approach to CFT is a unitary modular functor, the construction of which follows from a "Quantization commutes with reduction"- type of theorem for unitary quantizations of the moduli spaces of holomorphic torus-bundles and actions of loop groups. This theorem in turn is a consequence of general constructions in the category of affine symplectic manifolds and their associated generalized Heisenberg groups.Comment: 45 pages, some parts have been rewritten. Version to appear in Quart. J. Mat

    Similar works