research

Schwarzian Derivatives and Uniform Local Univalence

Abstract

Quantitative estimates are obtained for the (finite) valence of functions analytic in the unit disk with Schwarzian derivative that is bounded or of slow growth. A harmonic mapping is shown to be uniformly locally univalent with respect to the hyperbolic metric if and only if it has finite Schwarzian norm, thus generalizing a result of B. Schwarz for analytic functions. A numerical bound is obtained for the Schwarzian norms of univalent harmonic mappings

    Similar works

    Full text

    thumbnail-image

    Available Versions