research

Quantum limited measurements of atomic scattering properties

Abstract

We propose a method to perform precision measurements of the interaction parameters in systems of N ultra-cold spin 1/2 atoms. The spectroscopy is realized by first creating a coherent spin superposition of the two relevant internal states of each atom and then letting the atoms evolve under a squeezing Hamiltonian. The non-linear nature of the Hamiltonian decreases the fundamental limit imposed by the Heisenberg uncertainty principle to N^(-2), a factor of N smaller than the fundamental limit achievable with non-interacting atoms. We study the effect of decoherence and show that even with decoherence, entangled states can outperform the signal to noise limit of non-entangled states. We present two possible experimental implementations of the method using Bose-Einstein spinor condensates and fermionic atoms loaded in optical lattices and discuss their advantages and disadvantages.Comment: 7 pages, 5 figures. References adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019