In this paper, the axion contribution to the electromagnetic wave propagation
is studied. First we show how the axion electrodynamics model can be embedded
into a premetric formalism of Maxwell electrodynamics. In this formalism, the
axion field is not an arbitrary added Chern-Simon term of the Lagrangian, but
emerges in a natural way as an irreducible part of a general constitutive
tensor.We show that in order to represent the axion contribution to the wave
propagation it is necessary to go beyond the geometric approximation, which is
usually used in the premetric formalism. We derive a covariant dispersion
relation for the axion modified electrodynamics. The wave propagation in this
model is studied for an axion field with timelike, spacelike and null
derivative covectors. The birefringence effect emerges in all these classes as
a signal of Lorentz violation. This effect is however completely different from
the ordinary birefringence appearing in classical optics and in premetric
electrodynamics. The axion field does not simple double the ordinary light cone
structure. In fact, it modifies the global topological structure of light cones
surfaces. In CFJ-electrodynamics, such a modification results in violation of
causality. In addition, the optical metrics in axion electrodynamics are not
pseudo-Riemannian. In fact, for all types of the axion field, they are even
non-Finslerian