research

Boson Mott insulators at finite temperatures

Abstract

We discuss the finite temperature properties of ultracold bosons in optical lattices in the presence of an additional, smoothly varying potential, as in current experiments. Three regimes emerge in the phase diagram: a low-temperature Mott regime similar to the zero-temperature quantum phase, an intermediate regime where MI features persist, but where superfluidity is absent, and a thermal regime where features of the Mott insulator state have disappeared. We obtain the thermodynamic functions of the Mott phase in the latter cases. The results are used to estimate the temperatures achieved by adiabatic loading in current experiments. We point out the crucial role of the trapping potential in determining the final temperature, and suggest a scheme for further cooling by adiabatic decompression

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 17/03/2019