We explore the possibility that a scalar field with appropriate Lagrangian
can mimic a perfect fluid with an affine barotropic equation of state. The
latter can be thought of as a generic cosmological dark component evolving as
an effective cosmological constant plus a generalized dark matter. As such, it
can be used as a simple, phenomenological model for either dark energy or
unified dark matter. Furthermore, it can approximate (up to first order in the
energy density) any barotropic dark fluid with arbitrary equation of state. We
find that two kinds of Lagrangian for the scalar field can reproduce the
desired behaviour: a quintessence-like with a hyperbolic potential, or a purely
kinetic k-essence one. We discuss the behaviour of these two classes of models
from the point of view of the cosmological background, and we give some hints
on their possible clustering properties.Comment: 9 pages, 6 figures. Minor updates, accepted by CQ