research

Supercurrent survival under Rosen-Zener quench of hard core bosons

Abstract

We study the survival of super-currents in a system of impenetrable bosons subject to a quantum quench from its critical superfluid phase to an insulating phase. We show that the evolution of the current when the quench follows a Rosen-Zener profile is exactly solvable. This allows us to analyze a quench of arbitrary rate, from a sudden destruction of the superfluid to a slow opening of a gap. The decay and oscillations of the current are analytically derived, and studied numerically along with the momentum distribution after the quench. In the case of small supercurrent boosts ν\nu, we find that the current surviving at long times is proportional to ν3\nu^3

    Similar works