As spin glass materials have extremely slow dynamics, devious numerical
methods are needed to study low-temperature states. A simple and fast
optimization version of the classical Kasteleyn treatment of the Ising model is
described and applied to two-dimensional Ising spin glasses. The algorithm
combines the Pfaffian and matching approaches to directly strip droplet
excitations from an excited state. Extended ground states in Ising spin glasses
on a torus, which are optimized over all boundary conditions, are used to
compute precise values for ground state energy densities.Comment: 4 pages, 2 figures; minor clarification