The concomitant overabundances of C, N and s-process elements are commonly
ascribed to the complex interplay of nucleosynthesis, mixing and mass loss
taking place in Asymptotic Giant Branch stars. At low metallicity, the
enhancement of C and/or N may be up to 1000 times larger than the original iron
content and significantly affects the stellar structure and its evolution. For
this reason, the interpretation of the already available and still growing
amount of data concerning C-rich metal-poor stars belonging to our Galaxy as
well as to dwarf spheroidal galaxies would require reliable AGB stellar models
for low and very low metallicities. In this paper we address the question of
calculation and use of appropriate opacity coefficients, which take into
account the C enhancement caused by the third dredge up. A possible N
enhancement, caused by the cool bottom process or by the engulfment of protons
into the convective zone generated by a thermal pulse and the subsequent huge
third dredge up, is also considered. Basing on up-to-date stellar models, we
illustrate the changes induced by the use of these opacity on the physical and
chemical properties expected for these stars.Comment: 23 pages, 8 figures, accepted for publication in Ap