The mechanism of carbon nanotube (CNT) nucleation and growth has been a
mystery for over 15 years. Prior models have attempted the extension of older
classical transport mechanisms. In July 2000, a more detailed and accurate
nonclassical, relativistic mechanism was formulated considering the detailed
dynamics of the electronics of spin and orbital rehybridization between the
carbon and catalyst via novel mesoscopic phenomena and quantum dynamics.
Ferromagnetic carbon was demonstrated. Here, quantum (Hall) effects and
relativistic effects of intense many body spin-orbital interactions for novel
orbital rehybridization dynamics (Little Effect) are proposed in this new
dynamical magnetic mechanism. This dynamic ferromagnetic mechanism is proven by
imposing dynamic and static magnetic fields during CNT syntheses and observing
the different influence of these external magnetic environments on the
catalyzing spin currents and spin waves and the resulting CNT formation