We examine whether the Painleve property is necessary for the integrability
of partial differential equations (PDEs). We show that in analogy to what
happens in the case of ordinary differential equations (ODEs) there exists a
class of PDEs, integrable through linearisation, which do not possess the
Painleve property. The same question is addressed in a discrete setting where
we show that there exist linearisable lattice equations which do not possess
the singularity confinement property (again in analogy to the one-dimensional
case).Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and
Applications) at http://www.emis.de/journals/SIGMA