An investigation of the possible inflation of stimulated Brillouin
backscattering (SBS) due to ion kinetic effects is presented using
electromagnetic particle simulations and integrations of three-wave
coupled-mode equations with linear and nonlinear models of the nonlinear ion
physics. Electrostatic simulations of linear ion Landau damping in an ion
acoustic wave, nonlinear reduction of damping due to ion trapping, and
nonlinear frequency shifts due to ion trapping establish a baseline for
modeling the electromagnetic SBS simulations. Systematic scans of the laser
intensity have been undertaken with both one-dimensional particle simulations
and coupled-mode-equations integrations, and two values of the electron-to-ion
temperature ratio (to vary the linear ion Landau damping) are considered. Three
of the four intensity scans have evidence of SBS inflation as determined by
observing more reflectivity in the particle simulations than in the
corresponding three-wave mode-coupling integrations with a linear ion-wave
model, and the particle simulations show evidence of ion trapping.Comment: 56 pages, 20 figure