research

The Loewner driving function of trajectory arcs of quadratic differentials

Abstract

We obtain a first order differential equation for the driving function of the chordal Loewner differential equation in the case where the domain is slit by a curve which is a trajectory arc of certain quadratic differentials. In particular this includes the case when the curve is a path on the square, triangle or hexagonal lattice in the upper halfplane or, indeed, in any domain with boundary on the lattice. We also demonstrate how we use this to calculate the driving function numerically. Equivalent results for other variants of the Loewner differential equation are also obtained: Multiple slits in the chordal Loewner differential equation and the radial Loewner differential equation. The method also works for other versions of the Loewner differential equation. The proof of our formula uses a generalization of Schwarz-Christoffel mapping to domains bounded by trajectory arcs of rotations of a given quadratic differential that is of interest in its own right.Comment: 22 pages, 4 figures Changes in v2: Changed some definitions and exchanged ordering of theorems for clarity purposes. Typos corrected. Changes in v3: Mistakes corrected. Added new Lemma 2.2. Overall clarity improve

    Similar works