We report ab initio calculations of the melting curve of molybdenum for the
pressure range 0-400 GPa. The calculations employ density functional theory
(DFT) with the Perdew-Burke-Ernzerhof exchange-correlation functional in the
projector augmented wave (PAW) implementation. We present tests showing that
these techniques accurately reproduce experimental data on low-temperature
b.c.c. Mo, and that PAW agrees closely with results from the full-potential
linearized augmented plane-wave implementation. The work attempts to overcome
the uncertainties inherent in earlier DFT calculations of the melting curve of
Mo, by using the ``reference coexistence'' technique to determine the melting
curve. In this technique, an empirical reference model (here, the embedded-atom
model) is accurately fitted to DFT molecular dynamics data on the liquid and
the high-temperature solid, the melting curve of the reference model is
determined by simulations of coexisting solid and liquid, and the ab initio
melting curve is obtained by applying free-energy corrections. Our calculated
melting curve agrees well with experiment at ambient pressure and is consistent
with shock data at high pressure, but does not agree with the high pressure
melting curve deduced from static compression experiments. Calculated results
for the radial distribution function show that the short-range atomic order of
the liquid is very similar to that of the high-T solid, with a slight decrease
of coordination number on passing from solid to liquid. The electronic
densities of states in the two phases show only small differences. The results
do not support a recent theory according to which very low dTm/dP values are
expected for b.c.c. transition metals because of electron redistribution
between s-p and d states.Comment: 27 pages, 10 figures. to be published in Journal of Chemical Physic