Methods and Techniques for Clinical Text Modeling and Analytics

Abstract

Nowadays, a large portion of clinical data only exists in free text. The wide adoption of Electronic Health Records (EHRs) has enabled the increases in accessing to clinical documents, which provide challenges and opportunities for clinical Natural Language Processing (NLP) researchers. Given free-text clinical notes as input, an ideal system for clinical text understanding should have the ability to support clinical decisions. At corpus level, the system should recommend similar notes based on disease or patient types, and provide medication recommendation, or any other type of recommendations, based on patients' symptoms and other similar medical cases. At document level, it should return a list of important clinical concepts. Moreover, the system should be able to make diagnostic inferences over clinical concepts and output diagnosis. Unfortunately, current work has not systematically studied this system. This study focuses on developing and applying methods/techniques in different aspects of the system for clinical text understanding, at both corpus and document level. We deal with two major research questions: First, we explore the question of How to model the underlying relationships from clinical notes at corpus level? Documents clustering methods can group clinical notes into meaningful clusters, which can assist physicians and patients to understand medical conditions and diseases from clinical notes. We use Nonnegative Matrix Factorization (NMF) and Multi-view NMF to cluster clinical notes based on extracted medical concepts. The clustering results display latent patterns existed among clinical notes. Our method provides a feasible way to visualize a corpus of clinical documents. Based on extracted concepts, we further build a symptom-medication (Symp-Med) graph to model the Symp-Med relations in clinical notes corpus. We develop two Symp-Med matching algorithms to predict and recommend medications for patients based on their symptoms. Second, we want to solve the question of How to integrate structured knowledge with unstructured text to improve results for Clinical NLP tasks? On the one hand, the unstructured clinical text contains lots of information about medical conditions. On the other hand, structured Knowledge Bases (KBs) are frequently used for supporting clinical NLP tasks. We propose graph-regularized word embedding models to integrate knowledge from both KBs and free text. We evaluate our models on standard datasets and biomedical NLP tasks, and results showed encouraging improvements on both datasets. We further apply the graph-regularized word embedding models and present a novel approach to automatically infer the most probable diagnosis from a given clinical narrative.Ph.D., Information Studies -- Drexel University, 201

    Similar works