Decomposition and duality based approaches to stochastic integer programming

Abstract

Stochastic Integer Programming is a variant of Linear Programming which incorporates integer and stochastic properties (i.e. some variables are discrete, and some properties of the problem are randomly determined after the first-stage decision). A Stochastic Integer Program may be rewritten as an equivalent Integer Program with a characteristic structure, but is often too large to effectively solve directly. In this thesis we develop new algorithms which exploit convex duality and scenario-wise decomposition of the equivalent Integer Program to find better dual bounds and faster optimal solutions. A major attraction of this approach is that these algorithms will be amenable to parallel computation

    Similar works