On wireless network scheduling with intersession network coding

Abstract

Abstract—Cross-layer optimization including congestion con-trol, routing, and scheduling has shown dramatic throughput improvement over layered designs for wireless networks. In parallel, the paradigm-shifting network coding has empirically demonstrated substantial throughput improvement when coding operations are permitted at intermediate nodes and packets from different sessions are mixed. Designing network codes and the associated flow in network coding presents new challenges for cross-layer optimization for wireless multi-hop networks. This work shows that with a new flow-based characterization of pairwise intersession network coding, a joint optimal scheduling and rate-control algorithm can be implemented distributively. Optimal scheduling is computationally expensive to achieve even in a purely routing-based (without network coding) paradigm, let alone with network coding. Thus, in this paper, the impact of imperfect scheduling is studied, which shows that pairwise intersession network coding can improve the throughput of routing-based solutions regardless of whether perfect/imperfect scheduling is used. Both the deterministic and stochastic packet arrivals and departures are considered. This work shows for the first time a striking resemblance between pairwise intersession network coding and routing, and thus advocates extensions of routing-based wisdoms to their network coding counterpart. Index Terms—Network coding, pairwise intersession network coding, imperfect scheduling, cross-layer optimization, congestion control. I

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 26/03/2019