research

Physically Based and Stochastic Models for Greenland Moulin Formation, Longevity, and Spatial Distribution

Abstract

Nearly all proglacial water discharge from the Greenland Ice Sheet is routed englacially, from the surface to the bed, via moulins. Identification of moulins in high-resolution imagery is a frequent topic of study, but the processes controlling how and where moulins form remain poorly understood. We seek to leverage information gained from the development of a physical model of moulin formation, remotely sensed ice-sheet data products, and an analytic model of ice-flow perturbations to develop a predictive stochastic model of moulin distribution across Greenland. Here we present initial results from the physical model of moulin formation and characterize the sensitivity of moulin geometry to a range of model parameters. This parameterization of moulin formation is the first step in developing a stochastic model that will be a predictive, computationally efficient representation of the englacial hydrologic system

    Similar works