research

Robotic Asteroid Prospector (RAP)

Abstract

This report presents the results from the nine-month, Phase 1 investigation for the Robotic Asteroid Prospector (RAP). This project investigated several aspects of developing an asteroid mining mission. It conceived a Space Infrastructure Framework that would create a demand for in space-produced resources. The resources identified as potentially feasible in the near-term were water and platinum group metals. The project's mission design stages spacecraft from an Earth Moon Lagrange (EML) point and returns them to an EML. The spacecraft's distinguishing design feature is its solar thermal propulsion system (STP) that can provide for three functions:propulsive thrust, process heat for mining and mineral processing, and electricity. The preferred propellant is water since this would allow the spacecraft to refuel at an asteroid for its return voyage to Cis-Lunar space thus reducing the mass that must be staged out of the EML point.The spacecraft will rendezvous with an asteroid at its pole, match rotation rate, and attach to begin mining operations. The team conducted an experiment in extracting and distilling water from frozen regolith simulant

    Similar works