We study an action of the skew divided difference operators on the Schubert
polynomials and give an explicit formula for structural constants for the
Schubert polynomials in terms of certain weighted paths in the Bruhat order on
the symmetric group. We also prove that, under certain assumptions, the skew
divided difference operators transform the Schubert polynomials into
polynomials with positive integer coefficients.Comment: This is a contribution to the Vadim Kuznetsov Memorial Issue on
Integrable Systems and Related Topics, published in SIGMA (Symmetry,
Integrability and Geometry: Methods and Applications) at
http://www.emis.de/journals/SIGMA