Abstract

Herein we derive, under the micromechanical model we proposed earlier, Man and Paroni [14], a complete set of formulae for the twelve material constants in the acoustoelastic constitutive equation for orthorhombic aggregates of cubic crystallites. We present also a second model and compare its predictions on the material constants with those of the first model. Both these models lead to constitutive equations which are indifferent to rotation of reference placement. This allows us to appeal to a new representation theorem (Paroni and Man [15]), which greatly facilitates our derivation of the formulae for the material constants. The second model introduced in this paper is intimately related to some previous averaging theories in the literature. We explain why and in what sense our second model could be taken as a generalization of its predecessors

    Similar works