Structure and mechanism of action of two bacterial enzymes : MltE from Escherichia coli and AspB from Bacillus sp. YM55-1

Abstract

Het proefschrift beschrijft de kristalstructuren en reactiemechanismen van twee verschillende bacteriële enzymen, de lytische transglycosylase MltE uit Escherichia coli en de aspartase AspB uit Bacillus sp. YM55-1. MltE verbreekt de beta-1,4-glycosidische binding tussen N-acetylmuraminezuur and N-acetylglucosamine residuën in het bacteriële celwand materiaal peptidoglycan. MltE wordt gedacht een rol te spelen in het bacteriële celwand metabolisme, waardoor het een potentieel doelwit is voor antibacteriële middelen. MltE is één van de weinige endolytische transglycosylasen van E. coli. Kristalstructuren van MltE zonder substraat, met gebonden chitopentaose, en van een ternair complex met de inhibitor bulgecin en een murodipeptide maakten het mogelijk om in detail de interacties van het enzym met peptidoglycan fragmenten te bestuderen. In combinatie met plaatsgerichte mutagenese experimenten verklaren de structuren waarom MltE endolytische activiteit heeft en hoe het de reactie katalyseert. Het tweede enzyme, de aspartase AspB uit Bacillus sp. YM55-1, katalyseert de omzetting van L-aspartaat in fumaraat en ammonia. Aspartases worden gebruikt als biokatalysatoren voor de industriële productie van enantiozuiver L-aspartaat, een belangrijke bouwstof voor de synthese van voedseladditieven en zoetstoffen. Echter, het precieze katalytische mechanism van het enzym is lange tijd onduidelijk gebleven wegens gebrek aan informatie over hoe substraat en product aan het enzym binden. Door kristalstructuren van AspB op te helderen in aan- en afwezigheid van het substraat L-aspartaat hebben we nu de aminozuren kunnen definiëren die verantwoordelijk zijn voor de katalyse. In combinatie met plaatsgerichte mutagenese en enzym kinetiek experimenten kan het werkingsmechanisme van het enzym nu volledig verklaard worden. In this thesis, crystal structures and reaction mechanisms of two different bacterial enzymes are described. The first enzyme is the lytic transglycosylase MltE from Escherichia coli, which cleaves the beta-1,4-glycosidic bonds between N-acetylmuramic acid and Nacetylglucosamine residues in the bacterial cell wall material peptidoglycan. The enzyme is thought to function in bacterial cell wall turn-over, remodeling and maintenance, which makes it a potential target for antibacterials. MltE is distinct because it is one of the few endoacting lytic transglycosylases of E. coli. The crystal structures of MltE in a substrate-free state, in a binary complex with chitopentaose, and in a ternary complex with the glycopeptide inhibitor bulgecin A and a murodipeptide allowed a detailed analysis of the saccharidebinding interactions. In combination with site-directed mutagenesis studies the structures explain why MltE is an endo-acting enzyme and how it catalyzes the reaction. The second enzyme is the aspartase AspB from Bacillus sp. YM55-1, which catalyzes the reversible deamination of L-aspartate into fumarate and ammonia. Aspartases are used as biocatalysts for the industrial production of enantiopure L-aspartate, an important starting compound for the synthesis of food additives and artificial sweeteners. However, their precise catalytic mechanism has remained elusive because of lack of information on the binding mode of substrate, product or substrate analogs. Crystal structures of AspB in an unliganded state and with bound L-aspartate have now revealed the residues responsible for catalysis. Accompanying site directed mutagenesis and enzyme kinetics experiments allowed to fully explain the mechanism of action of this enzyme.

    Similar works