The Casimir force, which results from the confinement of the quantum
mechanical zero-point fluctuations of the electromagnetic fields, has received
significant attention in recent years for its effect on micro- and nano-scale
mechanical systems. With few exceptions, experimental observations have been
limited to conductive bodies interacting separated by vacuum or air. However,
interesting phenomena including repulsive forces are expected to exist in
certain circumstances between metals and dielectrics when the intervening
medium is not vacuum. In order to better understand the effect of the Casimir
force in such situations and to test the robustness of the generalized
Casimir-Lifshitz theory, we have performed the first precision measurements of
the Casimir force between two metals immersed in a fluid. For this situation,
the measured force is attractive and is approximately 80% smaller than the
force predicted by Casimir for ideal metals in vacuum. We present experimental
results and find them to be consistent with Lifshitz's theory.Comment: 6 pages, 3 figures. (version before final publication