The Balloon Dilatation and Large Profile Catheter Maintenance Method for the Management of the Bile Duct Stricture Following Liver Transplantation

Abstract

We dated a continuous, ∼22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ∼450 yr during glacial and late glacial time to ∼200 yr during the early and mid-Holocene, and increasing again to ∼250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ∼50-230 yr during the Holocene and ∼250-550 yr in the glacial section of the record. The δ13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin

    Similar works

    Available Versions

    Last time updated on 11/12/2019
    Last time updated on 15/10/2017