Abstract

There are many processes in biology in which mechanical forces are generated. Force-bearing networks can transduce locally developed mechanical signals very extensively over different parts of the cell or tissues. In this article we conduct an overview of this kind of mechanical transduction, focusing in particular on the multiple layers of complexity displayed by the mechanisms that control and trigger the conversion of a mechanical signal into a biochemical function. Single molecule methodologies, through their capability to introduce the force in studies of biological processes in which mechanical stresses are developed, are unveiling subtle intertwining mechanisms between chemistry and mechanics and in particular are revealing how chemistry can control mechanics. The possibility that chemistry interplays with mechanics should be always considered in biochemical studies.Comment: 50 pages, 18 figure

    Similar works