We analyze the generalization performance of a student in a model composed of
nonlinear perceptrons: a true teacher, ensemble teachers, and the student. We
calculate the generalization error of the student analytically or numerically
using statistical mechanics in the framework of on-line learning. We treat two
well-known learning rules: Hebbian learning and perceptron learning. As a
result, it is proven that the nonlinear model shows qualitatively different
behaviors from the linear model. Moreover, it is clarified that Hebbian
learning and perceptron learning show qualitatively different behaviors from
each other. In Hebbian learning, we can analytically obtain the solutions. In
this case, the generalization error monotonically decreases. The steady value
of the generalization error is independent of the learning rate. The larger the
number of teachers is and the more variety the ensemble teachers have, the
smaller the generalization error is. In perceptron learning, we have to
numerically obtain the solutions. In this case, the dynamical behaviors of the
generalization error are non-monotonic. The smaller the learning rate is, the
larger the number of teachers is; and the more variety the ensemble teachers
have, the smaller the minimum value of the generalization error is.Comment: 13 pages, 9 figure