Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS\u3csub\u3e2\u3c/sub\u3e

Abstract

We exploit scanning-probe-controlled domain patterning in a ferroelectric top layer to induce nonvolatile modulation of the conduction characteristic of monolayer MoS2 between a transistor and a junction state. In the presence of a domain wall, MoS2 exhibits rectified I-V characteristics that are well described by the thermionic emission model. The induced Schottky barrier height ΦeffB varies from 0.38 to 0.57 eV and is tunable by a SiO2 global back gate, while the tuning range of ΦeffB depends sensitively on the conduction-band-tail trapping states. Our work points to a new route to achieving programmable functionalities in van der Waals materials and sheds light on the critical performance limiting factors in these hybrid systems

    Similar works