The P-T phase stability field, the thermoelastic behavior and the P-induced deformation mechanisms at the atomic scale of pargasite crystals, from the "phlogopite peridotite unit" of the Finero mafic-ultramafic complex (Ivrea-Verbano Formation, Italy), have been investigated by a series of in situ experiments: (a) at high pressure (up to 20.1 GPa), by single-crystal synchrotron X-ray diffraction with a diamond anvil cell, (b) at high temperature (up to 823 K), by powder synchrotron X-ray diffraction using a hot air blower device, and (c) at simultaneous HP-HT conditions, by single-crystal synchrotron X-ray diffraction with a resistive-heated diamond anvil cell (Pmax = 16.5 GPa, Tmax = 1200 K). No phase transition has been observed within the P-T range investigated. At ambient T, the refined compressional parameters, calculated by fitting a second-order Birch-Murnaghan Equation of State (BM-EoS), are: V0 = 915.2(8) \uc53 and KP0,T0 = 95(2) GPa (\u3b2P0,T0 = 0.0121(2) GPa-1) for the unit-cell volume; a0 = 9.909(4) \uc5 and K(a)P0,T0 = 76(2) GPa for the a-axis; b0 = 18.066(7) \uc5 and K(b)P0,T0 = 111(2) GPa for the b-axis; c0 = 5.299(5) \uc5 and K(c)P0,T0 = 122(12) GPa for the c-axis [K(c)P0,T0 ~ K(b)P0,T0 > K(a)P0,T0]. The high-pressure structure refinements (at ambient T) show a moderate contraction of the TO4 double chain and a decrease of its bending in response to the hydrostatic compression, along with a pronounced compressibility of the A- and M(4)-polyhedra [KP0,T0(A) = 38(2) GPa, KP0,T0(M4) = 79(5) GPa] if compared to the M(1)-, M(2)-, M(3)-octahedra [KP0,T0(M1,2,3) 64 120 GPa] and to the rigid tetrahedra [KP0,T0(T1,T2) ~ 300 GPa]. The thermal behavior, at ambient pressure up to 823 K, was modelled with Berman's formalism, which gives: V0 = 909.1(2) \uc53, \u3b10 = 2.7(2)*10-5 K-1 and \u3b11 = 1.4(6)*10-9 K-2 [with \u3b10(a) = 0.47(6)*10-5 K-1, \u3b10(b) = 1.07(4)*10-5 K-1, and \u3b10(c) = 0.97(7)*10-5 K-1]. The petrological implications for the experimental findings of this study are discussed