We propose a variant of the Chvatal-Gomory procedure that will produce a
sufficient set of facet normals for the integer hulls of all polyhedra {xx : Ax
<= b} as b varies. The number of steps needed is called the small Chvatal rank
(SCR) of A. We characterize matrices for which SCR is zero via the notion of
supernormality which generalizes unimodularity. SCR is studied in the context
of the stable set problem in a graph, and we show that many of the well-known
facet normals of the stable set polytope appear in at most two rounds of our
procedure. Our results reveal a uniform hypercyclic structure behind the
normals of many complicated facet inequalities in the literature for the stable
set polytope. Lower bounds for SCR are derived both in general and for
polytopes in the unit cube.Comment: 24 pages, 3 figures, v3. Major revision: additional author, new
application to stable-set polytopes, reorganization of sections. Accepted for
publication in Mathematical Programmin