We re-examine the properties of the Constrained MSSM in light of updated
constraints, paying particular attention to the impact of the recent
substantial shift in the Standard Model prediction for BR(B to X_s gamma). With
the help of a Markov Chain Monte Carlo scanning technique, we vary all relevant
parameters simultaneously and derive Bayesian posterior probability maps. We
find that the case of \mu>0 remains favored, and that for \mu<0 it is
considerably more difficult to find a good global fit to current constraints.
In both cases we find a strong preference for a focus point region. This leads
to improved prospects for detecting neutralino dark matter in direct searches,
while superpartner searches at the LHC become more problematic, especially when
\mu<0. In contrast, prospects for exploring the whole mass range of the
lightest Higgs boson at the Tevatron and the LHC remain very good, which
should, along with dark matter searches, allow one to gain access to the
otherwise experimentally challenging focus point region. An alternative measure
of the mean quality-of-fit which we also employ implies that present data are
not yet constraining enough to draw more definite conclusions. We also comment
on the dependence of our results on the choice of priors and on some other
assumptions.Comment: JHEP versio