Bactericidal performance of nanostructured surfaces by fluorocarbon plasma

Abstract

This study presents the characterization and antibacterial activity of nanostructured Si by plasma treatment method using a tetrafluoromethane (CF4) and hydrogen (H2) mixture. Nanostructured-Si is a synthetic nanomaterial that contains high aspect ratio nanoprotrusions on its surface, produced through a reactive-ion etching process. We have shown that the nanoprotrusions on the surfaces produce a mechanical bactericidal effect. Nanostructured-Si exhibited notable activity against three different microorganisms: Gram-negative (Escherichia coli), Gram-positive (Staphylococcus aureus) and spore-forming bacteria (Bacillus cereus) producing a > 5 log10 reduction after 24\ua0h of incubation. Scanning electron microscopy was used to analysis the structure and morphology character of different surfaces evidencing the physical bactericidal activity of the Nanostructured-Si. These results provide excellent prospects for the development of a new generation of antibacterial surfaces

    Similar works

    Full text

    thumbnail-image