research

Extremal Graph Theory for Metric Dimension and Diameter

Abstract

A set of vertices SS \emph{resolves} a connected graph GG if every vertex is uniquely determined by its vector of distances to the vertices in SS. The \emph{metric dimension} of GG is the minimum cardinality of a resolving set of GG. Let Gβ,D\mathcal{G}_{\beta,D} be the set of graphs with metric dimension β\beta and diameter DD. It is well-known that the minimum order of a graph in Gβ,D\mathcal{G}_{\beta,D} is exactly β+D\beta+D. The first contribution of this paper is to characterise the graphs in Gβ,D\mathcal{G}_{\beta,D} with order β+D\beta+D for all values of β\beta and DD. Such a characterisation was previously only known for D2D\leq2 or β1\beta\leq1. The second contribution is to determine the maximum order of a graph in Gβ,D\mathcal{G}_{\beta,D} for all values of DD and β\beta. Only a weak upper bound was previously known

    Similar works

    Full text

    thumbnail-image

    Available Versions