A set of sufficient conditions to construct λ-real symbol Maximum
Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al.
STBCs satisfying these sufficient conditions were named as Clifford Unitary
Weight (CUW) codes. In this paper, the maximal rate (as measured in complex
symbols per channel use) of CUW codes for λ=2a,a∈N is
obtained using tools from representation theory. Two algebraic constructions of
codes achieving this maximal rate are also provided. One of the constructions
is obtained using linear representation of finite groups whereas the other
construction is based on the concept of right module algebra over
non-commutative rings. To the knowledge of the authors, this is the first paper
in which matrices over non-commutative rings is used to construct STBCs. An
algebraic explanation is provided for the 'ABBA' construction first proposed by
Tirkkonen et al and the tensor product construction proposed by Karmakar et al.
Furthermore, it is established that the 4 transmit antenna STBC originally
proposed by Tirkkonen et al based on the ABBA construction is actually a single
complex symbol ML decodable code if the design variables are permuted and
signal sets of appropriate dimensions are chosen.Comment: 5 pages, no figures, To appear in Proceedings of IEEE ISIT 2007,
Nice, Franc