Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata

Abstract

We investigate the succinctness of several kinds of unary automata by studying their state complexity in accepting the family {Lm} of cyclic languages, where Lm = {akm|k 08 N}. In particular, we show that, for any m, the number of states necessary and sufficient for accepting the unary language Lm with isolated cut point on one-way probabilistic finite automata is p1\u3b11 + p2\u3b12 + ef + ps\u3b1s, with p1\u3b11p2\u3b12 ef ps\u3b1s being the factorization of m. To prove this result, we give a general state lower bound for accepting unary languages with isolated cut point on the one-way probabilistic model. Moreover, we exhibit one-way quantum finite automata that, for any m, accept Lm with isolated cut point and only two states. These results are settled within a survey on unary automata aiming to compare the descriptional power of deterministic, nondeterministic, probabilistic and quantum paradigms

    Similar works