Recently, much research has been carried out on Hamiltonians that are not
Hermitian but are symmetric under space-time reflection, that is, Hamiltonians
that exhibit PT symmetry. Investigations of the Sturm-Liouville eigenvalue
problem associated with such Hamiltonians have shown that in many cases the
entire energy spectrum is real and positive and that the eigenfunctions form an
orthogonal and complete basis. Furthermore, the quantum theories determined by
such Hamiltonians have been shown to be consistent in the sense that the
probabilities are positive and the dynamical trajectories are unitary. However,
the geometrical structures that underlie quantum theories formulated in terms
of such Hamiltonians have hitherto not been fully understood. This paper
studies in detail the geometric properties of a Hilbert space endowed with a
parity structure and analyses the characteristics of a PT-symmetric Hamiltonian
and its eigenstates. A canonical relationship between a PT-symmetric operator
and a Hermitian operator is established. It is shown that the quadratic form
corresponding to the parity operator, in particular, gives rise to a natural
partition of the Hilbert space into two halves corresponding to states having
positive and negative PT norm. The indefiniteness of the norm can be
circumvented by introducing a symmetry operator C that defines a positive
definite inner product by means of a CPT conjugation operation.Comment: 22 Page