We present a protocol for growing graph states, the resource for one-way
quantum computing, when the available entanglement mechanism is highly
imperfect. The distillation protocol is frugal in its use of ancilla qubits,
requiring only a single ancilla qubit when the noise is dominated by one Pauli
error, and two for a general noise model. The protocol works with such scarce
local resources by never post-selecting on the measurement outcomes of
purification rounds. We find that such a strategy causes fidelity to follow a
biased random walk, and that a target fidelity is likely to be reached more
rapidly than for a comparable post-selecting protocol. An analysis is presented
of how imperfect local operations limit the attainable fidelity. For example, a
single Pauli error rate of 20% can be distilled down to ∼10 times the
imperfection in local operations.Comment: 4 pages of main paper with an additional 1 page appendix, 5 figures.
Please contact me with any comment