The weakest failure detector for wait-free dining under eventual weak exclusion

Abstract

Dining philosophers is a classic scheduling problem for local mutual exclusion on arbitrary conflict graphs. We establish necessary conditions to solve wait-free dining under eventual weak exclusion in message-passing systems with crash faults. Wait-free dining ensures that every correct hungry process eventually eats. Eventual weak exclusion permits finitely many scheduling mistakes, but eventually no live neighbors eat simultaneously; this exclusion criterion models scenarios where scheduling mistakes are recoverable or only affect per-formance. Previous work showed that the eventually perfect failure detector (3P) is sufficient to solve wait-free dining under eventual weak exclusion; we prove that 3P is also necessary, and thus 3P is the weakest oracle to solve this problem. Our reduction also establishes that any such din-ing solution can be made eventually fair. Finally, the reduc-tion itself may be of more general interest; when applied to wait-free perpetual weak exclusion, our reduction produces an alternative proof that the more powerful trusting oracle (T) is necessary (but not sufficient) to solve the problem o

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 16/02/2019