Spatiotemporal oriented energies for spacetime stereo

Abstract

This paper presents a novel approach to recovering tem-porally coherent estimates of 3D structure of a dynamic scene from a sequence of binocular stereo images. The approach is based on matching spatiotemporal orientation distributions between left and right temporal image streams, which encapsulates both local spatial and temporal struc-ture for disparity estimation. By capturing spatial and tem-poral structure in this unified fashion, both sources of in-formation combine to yield disparity estimates that are nat-urally temporal coherent, while helping to resolve matches that might be ambiguous when either source is considered alone. Further, by allowing subsets of the orientation mea-surements to support different disparity estimates, an ap-proach to recovering multilayer disparity from spacetime stereo is realized. The approach has been implemented with real-time performance on commodity GPUs. Empir-ical evaluation shows that the approach yields qualitatively and quantitatively superior disparity estimates in compari-son to various alternative approaches, including the ability to provide accurate multilayer estimates in the presence of (semi)transparent and specular surfaces. 1

    Similar works

    Full text

    thumbnail-image

    Available Versions