University of Zagreb. Faculty of Science. Department of Mathematics.
Abstract
U ovom radu proučavamo pojam proširenja grupe. Dokazujemo važan rezultat o bijekciji između proširenja i grupe kohomologije. U prvom poglavlju ponavljamo osnovne definicije i rezultate iz algebarskih struktura. U drugom poglavlju uvodimo pojam semidirektnog produkta i njegova svojstva. Treće poglavlje se bavi generalnim proširenjima i kohomologijom. Uvodimo pojmove kociklusa koristeći pojam podizanja. U ovom poglavlju dolazimo do najbitnijih rezultata rada, Schreireovog teorema koji koristi kocikluse u rješavanju problema proširenja te kao njegovu posljedicu, Schur-Zassenhausovu lemu.In this diploma thesis we study group extensions. We prove important result about bijection between extensions and group cohomology. In first chapter we recall basic definitions and results from algebraic structures. In second chapter we introduce the idea of semidirect product and its properties. The third chapter is about general extensions and cohomology. We introduce the concept of cocycle using the definition of lifting. In this chapter we prove the most important results of the thesis, Schreir’s theorem which uses cocycle to solve the extension problem and Schur-Zassenhaus lemma which is it’s consequence